

Neurodevelopment

Checkpoints in children with congenital heart disease

Jeehun Lee, M.D., PhD. Pediatric Neurology Samsung Medical Center Sungkyunkwan University, School of Medicine

Heart and Brain : Why dose the brain matter?

- Dramatic decline in mortality rates of young children with congenital heart disease (CHD)
 by marvelous advances in medical and surgical management
- A shift of focus from the heart to the brain
 - Neurologic injury
 - : One of the most common extracardiac complications
 - Neurodevelopment outcome and quality of life
 - : Equally important primary outcomes.

Neurologic complications in CHD

Presurgical

- Associated with CHD/circulation
- Genetic

Postsurgical

- Ass. with surgery or CHD/circulation
- Genetic

Neurologic complications in CHD

- The advance of neonatal heart repair into the earliest days of the newborn period
 - → Shorter period before cardiac correction
 - → decreased the brain's exposure to the chronic hypoxia

Neurologic complications in CHD

- The marked circulatory changes in patients with a structurally and functionally immature cerebral vasculature
- The increased vascular fragility and tenuous autoregulation
 - → Increase hemorrhagic or ischemic injury

Contents

- Description of developmental problems in patients with CHD
- Clinical check points according to the developmental stages

Neurodevelopmental problems in CHD

Clinical presentation : Incidence

Limperopoulos (J Pediatr 2000)

- Incidence of neurobehavioral abnormalities prior to surgery
 - > 50% of newborns
 - 38% of infants (1months ~ 2 years of age)

Clinical presentation

- Hypo/hyper-tonia
- Excessive jitteriness, motor asymmetries
- Poor sucking
- Preoperative seizure (7%)
- Microcephaly (36%)

Clinical presentation : Incidence

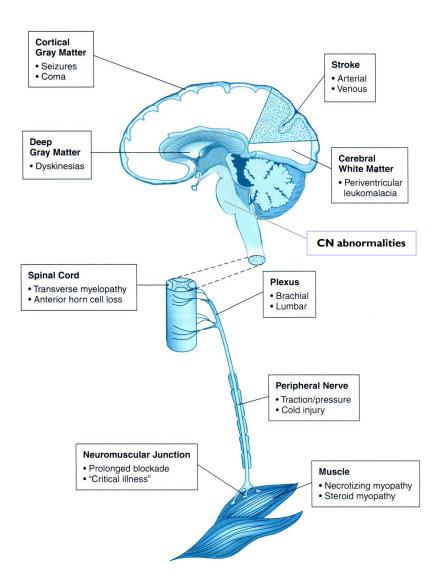
- Andrew Andrew A

Chock et al. (Perinatol 2006)

- Neurologic complication after surgery
- Acute neurological events
 - : Seizure, abnormal tone, choreoathetosis
 - **25%** within the first week after surgery
 - **56%** after the first week

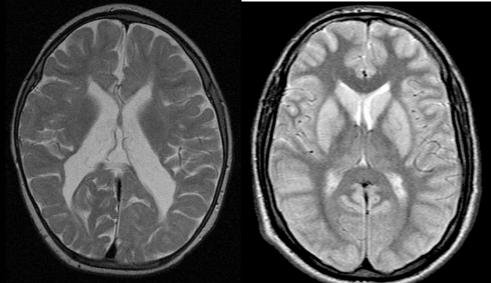
Clinical presentation : Incidence

Miller et al. (Arch Pediatr Adolesc Med 1995)


- Decreased level of consciousness (19%)
- Seizures (5%)
- Pyramidal signs (7%)

– motor abnormalities, swallowing/sucking dysfunction...

Clinical presentation : Anatomic distribution



Clinical presentation : Time sequence

Preoperative complications: neonatal CVD

- Etiology
 - Structural and functional vascular immaturity
 - Systemic hemodynamic instability
 - In premature infant: hemorrhagic or ischemic injury- IVH, PVL
 - CHD prolongs the risk period for the maturity-dependent injury

Clinical presentation : Time sequence

Preoperative complications: neonatal CVD

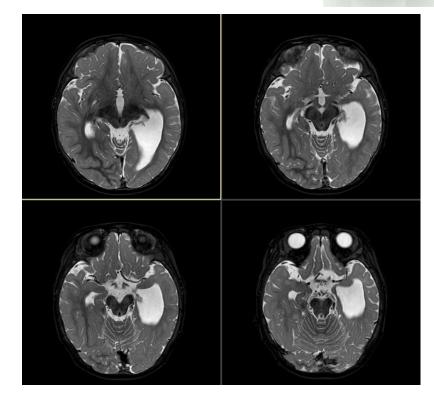
 The incidence of antenatal CVD is increased in CHD patients

van Houten et al. (Am J Perinatol 1996)

- Cerebral abnormalities in 59% of patients (term infants)
- Cerebral atrophy (41%), Linear echodensities of the deep GM (20%)
- IVH (16%)
- Parenchymal echodensities (16%)

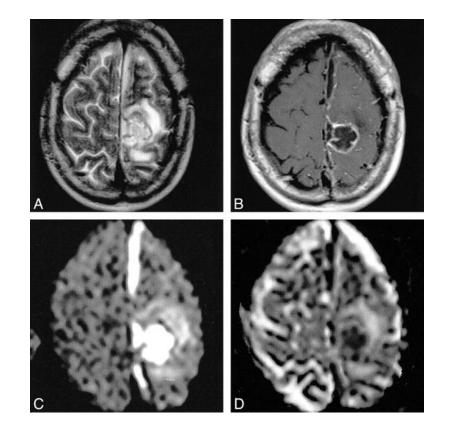
Postoperative complications

Early complications


- Incidence: up to 25%
- Transient and of little long-term consequences
- However, may be associated with long-term adverse outcomes

Postoperative complications

- Early complications; Clinical manifestations
 - Delayed recovery of consciousness
 - Seizures
 - Movement disorders
 - Spinal cord injury
 - Peripheral neuromuscular injury
- Late complications
 - Stroke, headache


Neurologic Complications unrelated to surgery

- Cerebral dysgenesis
 - Incidence: 10~29% in postmortem exam studies
 - Manifests as seizures, altered conscousness, abnormal motor tone, and developmental delay
 - Cerebral dysgenesis is more frequent in infants with hypoplastic left heart syndrome

Neurologic Complications unrelated to surgery

- Infectious complications
 - Brain abscess
 - Cerebral mycotic aneurysms

Inherited disease

- Inborn errors of metabolism
- Disorders of energy production
 - : mitochondrial disease
- Storage disease
 - : glycogen storage disease, lysosomal storage disease

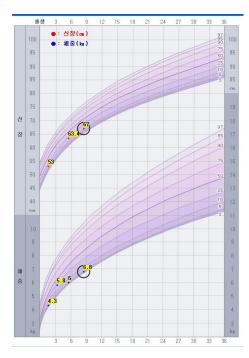
Inherited disease

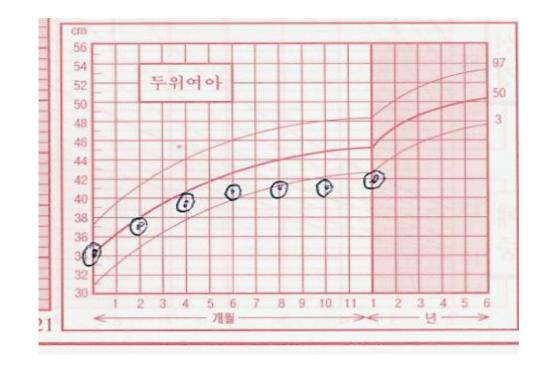
- Inherited neuromuscular disorders with cardiac complications
 - X-linked muscular dystrophy DMD, Emery-Dreifuss MD
 - Myotonic dystrophy
 - Friedreich's ataxia
- Chromosomal disorders
 - CATCH-22 spectrum
 - Williams' syndrome

Neurodevelopment : clinical check-points

Components of neurologic examination

- Physical examination
- Mental status examination
- Cranial nerve examination
- Motor examination muscle bulkiness, tone, strength
- Sensory
- Deep tendon reflexes
- Pathologic reflexes
- Coordination


How to apply? - Neurologic examination


- Arman Ar
- Inspection and observation are the first step in N/E.
- Before handling, just see!
- Delineate the presence of congenital abnormalities
- Skin
- Mental status, CNE, motor tone and strength, posture, asymmetricity, movements of face and extremities

Physical examination

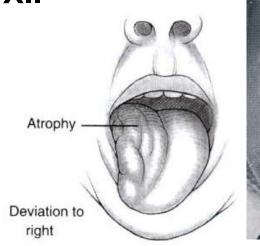
• Physical check-up: head circumference, Ht./Bwt.

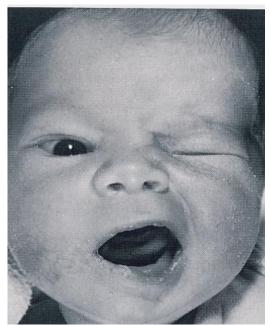
Observation

- Dysmorphism
- Skin
- Posture
- Motor asymmetry
- Genetic disease

Mental status examination

- Usually depends on observation and the patient's response during examination
- Consciousness rating scales
- Glasgow coma scale and modification for children


GCS modified for children



SIGN₽	GCS.	GCS-modified₽	SCORE
Eye 阔	Spontaneous₽	Spontaneous#	4.0
opening₽	To command#	To sound.	3₽
ę	To pain≓	To paine	2.0
ę	None ⁴³	None+	1.0
Verbal 🧧	Oriented	Age appropriate verbalization#	5₽
response₽	Confused	Cries, but inconsolable#	4₽
φ.	Disoriented#	Irritable, uncooperative, aware of environment#	3₽
ę	Inappropriate words#	Irritable persistent cries, inconsistently consolable.	2.0
ę	Incomprehensible sounds#	Inconsolable crying, unaware of environment or parents, restless, agitated.	1.0
ę	None ⁴³	None	1.0
Motor₽	Obeys commands+	Obeys commands, spontaneous movement#	6 ₄
response₽	Localized pain₽	Localized pain#	5₽
ą	Withdraws#	Withdraws.	4.0
ę	Abnormal flexion to pain#	Abnormal flexion to pain-	3₽
ą	Abnormal extension@	Abnormal extension.	2.0
φ.	None	None	1.0

Cranial nerve examination

- Light reflex (CN II→III)
 - Dilated pupil: brain herniation, anoxia, atropine, scopolamine
 - Constricted pupil: pontine injury, morphine, meperidine
- Facial motor: CN VII
- Gag reflex: CN IX \rightarrow CN X
- Bulbar palsy: CN IX ~ XII

Upper motor signs

- Motor tone and strength: spastic/rigid, weakness
- no decrease of muscle bulkiness
- No fasciculation and fibrillation
- Hyperreflexia
- Positive Babinski signs and ankle clonus

Lower motor signs

- Motor tone and strength: flaccid paralysis
- Decreased muscle bulkiness: atrophy
- Presence of fasciculation and fibrillation
- Hyporeflexia
- No Babinski sings and ankle clonus
- Lesions from anterior horn cell to musices

Seizure

• Seizure

" paroxysmal electrical discharges from the cortical neuron

- → result in a LOC, alteration of sensory or impairment of psychic function, convulsive movements, disturbance of sensation, or some combination"
- Epilepsy: diagnosed after two or more unprovoked seizures

Unprovoked: no closely associated concurrent illness, fever, or acute brain injury

cf. Reflex seizure, stresses related to personal activity

Choreoathetosis

- Chorea: involuntary, forcible, rapid, jerky movements, usually involving proximal part of the extremities
- Athetosis: inability to maintain the fingers, toes, tongue, or other body parts in a stable position, resulting in continuous slow, sinusoidal, and flowing involuntary movements (distal part)
- Choreoathetosis is the most frequently reported dyskinesia after cardiac surgery

Neuromonitoring

Initial evaluation for development

- Record the PHYSICAL MEASUREMENTS (ex. HC)
- Ask the KEY DEVELOPMENT
 - : gross motor, fine motor, communication
- N/E
- Delineate the STATUS OF HEART DISEASE
- Ascertain the feeding, infection, and other GENERAL MEDICAL CONDITION
- Check the CO-MORBIDITIES

Immediate postoperative evaluation

- Observe MENTAL STATUS using rating scale with time SEQUENCE
- Record CNS INFLUENCING DRUGS such as sedatives, opioids
- BEDSIDE N/E: observation, L/R, posture, motor, reflexes
- Reports the ABNORMAL MOVEMENTS: use home video

Consider EEG, brain imaging

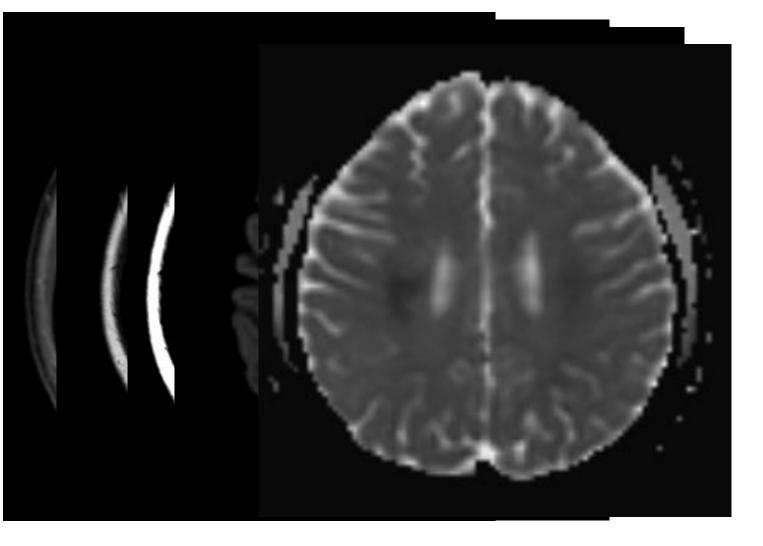
- DELAYED RECOVERY OF CONSCIOUSNESS
- SEIZURE
- MOVEMENT DISORDER

Clinical follow-up for development

- Serial record for the physical measurement
- Compare the developmental mile stones to norms and previous status
- N/E

- Delineate the status of heart disease
- Ascertain the feeding, infection, and other general medical condition
- Check the co-morbidities: vision, hearing
- Developmental evaluation using the scales (ex. Bayley scales): 1.5-2 years of age

Brain imaging


- Brain USG
 - Convenient for bed side evaluation
 - Limitation: useful for up to 4months of age, poor resolution
- Brain CT
 - Use only to diagnosis of hemorrhage and fracture, limitation to find infarct

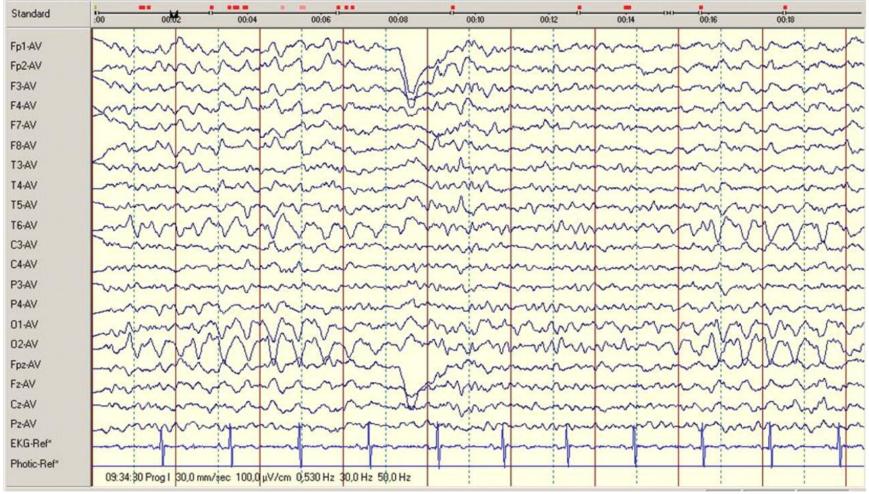
Brain MRI

- Method of choice in evaluating the CNS
- Limitations in applying to unstable patients
- Useful MR sequences
 - MRA
 - Diffusion-weighted imaging

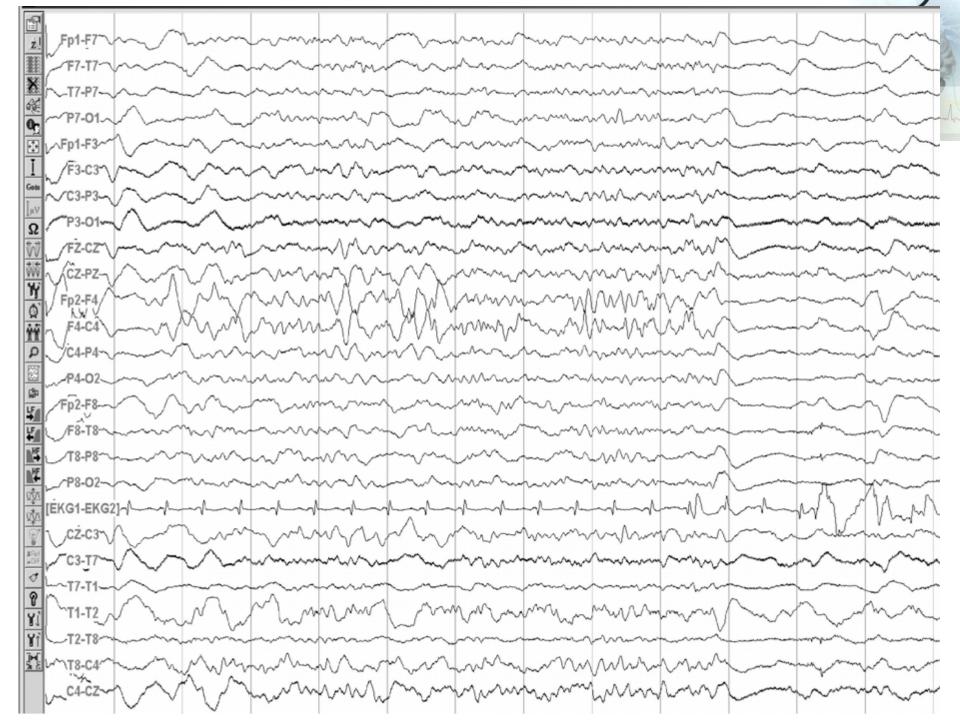
Brain MRI

- Mahle et al. (Circulation 2002)
 - Evidence of ischemic injury in 25% of patients
 - Elevated lactate on MRS in over 50% of patients
- Licht et al. (J Thorac Cadriovasc Surg 2004)
 - 53% of patients showed developmental or acquired brain lesions including brain dysgenesis and PVL
- McQuillen et al (Stroke 2007)
 - 39% of patients showed evidence of brain injury
 - Stroke white matter injury

Intraoperative MRI



EEG



- Functional electrophysiologic study
 - Evaluate the normal rhythms and indicators
 - Diagnosis of focal lesions
 - Diagnosis of subclinical seizure
- Continuous EEG monitoring and signal-processed EEG algorithms
 - Bispectral Index
 - Amplitude integrated EEG
- Evoked potentials: auditory, somatosensory, and visual

Summary

- Preoperative neurologic abnormalities associated with CHD exist in about 50% of neonates and 38% of infants.
- Neurologic complications after surgery present as seizure, abnormal motor tone, or choreoathetosis in 25% patients within a week.
- Well organized preoperative and immediate postoperative neurologic assessment, and scheduled follow-up in neurologic clinic are helpful for the timely applying neuroimaging and intervention.
- Brain MRI and EEG monitoring are useful for the postsurgical monitor and evaluation of neurologic injury.